Bottlenosed Dolphin near Los Cabos.

Bottlenose dolphins
, the genus Tursiops, are the most common and well-known members of the family Delphinidae, the family of oceanic dolphin. Recent molecular studies show the genus contains two species, the common bottlenose dolphin (Tursiops truncatus) and the Indo-Pacific bottlenose dolphin (Tursiops aduncus), instead of one. Research in 2011 revealed a third species, the Burrunan dolphin (Tursiops australis). Bottlenose dolphins inhabit warm and temperate seas worldwide.

Bottlenose dolphins live in groups typically of 10–30 members, called pods, but group size varies from single individuals up to more than 1,000. Their diets consist mainly of forage fish. Dolphins often work as a team to harvest fish schools, but they also hunt individually. Dolphins search for prey primarily using echolocation, which is similar to sonar. They emit clicking sounds and listen for the return echos to determine the location and shape of nearby items, including potential prey. Bottlenose dolphins also use sound for communication, including squeaks and whistles emitted from the blowhole and sounds emitted through body language, such as leaping from the water and slapping their tails on the water surface.

Numerous investigations of bottlenose dolphin intelligence have been conducted, examining mimicry, use of artificial language, object categorization, and self-recognition. They can use tools (sponging) and transmit cultural knowledge across generations, and their considerable intelligence has driven interaction with humans. Bottlenose dolphins are popular from aquarium shows and television programs such as Flipper. They have also been trained by militaries to locate sea mines or detect and mark enemy divers. In some areas, they cooperate with local fishermen by driving fish into their nets and eating the fish that escape. Some encounters with humans are harmful to the dolphins: people hunt them for food, and dolphins are killed inadvertently as a bycatch of tuna fishing and by getting caught in crab traps.

Bottlenose dolphins have the second largest brain to body mass ratio of any mammal on Earth (humans have the largest), sharing close ratios with those of humans and other great apes, which more than likely attributes to their incredibly high intelligence and emotional intelligence.

Description Edit

Bottlenose dolphins are grey, varying from dark grey at the top near the dorsal fin to very light grey and almost white at the underside. This countershadingmakes them hard to see, both from above and below, when swimming. Adults range from 2 to 4 metres (6.6 to 13.1 ft), and 150 to 650 kilograms (330 to 1,430 lb). Males are, on average, slightly longer and considerably heavier than females. In most parts of the world, the adult's are about 2.5 m (8.2 ft), and 200 to 300 kilograms (440 to 660 lb). Their size varies considerably with habitat. Except in the eastern Pacific, dolphins in warmer, shallower waters tend to be smaller than those in cooler, pelagic waters. Bottlenose dolphins can live for more than 40 years. However, one study of a population off Sarasota, Florida, indicated an average lifespan of 20 years or less.

Physiology and Senses Edit

In colder waters, they have more body fat and blood, and are more suited to deeper diving. Typically, 18%–20% of their bodyweight is blubber. Most research in this area has been restricted to the North Atlantic Ocean. Bottlenose dolphins typically swim at 5 to 11 km/h (1.4 to 3.1 m/s), but are capable of bursts of up to 29 to 35 km/h (8.1 to 9.7 m/s). The higher speeds can only be sustained for a short time.

Senses Edit

The dolphin's search for food is aide by a form of sonar known as echolocation: it locates objects by producing sounds and listening for the echos. A broadband burst pulse of clicking sounds is emitted in a focused beam in front of the dolphin. To hear the returning echo, they have two small ear openings behind the eyes, but most sound waves are transmitted to the inner ear through the lower jaw. As the object of interest is approached, the echo grows louder, and the dolphins adjust by decreasing the intensity of the emitted sounds. (This contrasts with bats and sonar, which reduce sensitivity of the sound receptor.) The interclick interval also decreases as the animal nears the target. Evidently, the dolphin waits for each click's echo before clicking again. Echolocation details, such as signal strength, spectral qualities, and discrimination, are well-understood by researchers. Bottlenose dolphins are also able to extract shape information, suggesting they are able to form an "echoic image" or sound picture of their targets.

Dolphins have sharp eyesight. The eyes are located at the sides of the head and have a tapetum lucidum, or reflecting membrane, at the back of the retina, which aids vision in dim light. Their horseshoe-shaped, double-slit pupils enable dolphins to have good vision both in air and underwater, despite the different indices of refraction of these media. When under water, the eyeball's lens serves to focus light, whereas in the in-air environment, the typically bright light serves to contract the specialized pupil, resulting in sharpness from a smaller aperture (similar to a pinhole camera).

By contrast, a bottlenose's sense of smell is poor, because its blowhole, the analogue to the nose, is closed when underwater and it opens only for breathing. It has no olfactory nerves or olfactory lobe in the brain. Bottlenose dolphins are able to detect salty, sweet, bitter (quinine sulphate), and sour (citric acid) tastes, but this has not been well-studied. Anecdotally, some animals in captivity have been noted to have preferences for food fish types, although it is not clear if taste mediates this preference.

Communication Edit

Bottlenose dolphins communicate through burst pulsed sounds, whistles, and body language. Examples of body language include leaping out of the water, snapping jaws, slapping the tail on the surface and butting heads. Sounds and gestures help keep track of other dolphins in the group, and alert other dolphins to danger and nearby food. Lacking vocal cords, they produce sounds using six air sacs near their blow hole. Each animal has a uniquely identifying, frequency-modulated narrow-band signature vocalization (signature whistle). Researchers from the Bottlenose Dolphin Research Institute (BDRI), based in Sardinia (Italy) have now shown whistles and burst pulsed sounds are vital to the animals' social life and mirror their behaviors.

The tonal whistle sounds (the most melodious ones) allow dolphins to stay in contact with each other (above all, mothers and offspring), and to coordinate hunting strategies. The burst-pulsed sounds (which are more complex and varied than the whistles) are used "to avoid physical aggression in situations of high excitement", such as when they are competing for the same piece of food, for example. The dolphins emit these strident sounds when in the presence of other individuals moving towards the same prey. The "least dominant" one soon moves away to avoid confrontation.

Other communication uses about 30 distinguishable sounds, and although famously proposed by John Lilly in the 1950s, no "dolphin language" has been found. However, Herman, Richards, and Wolz demonstrated comprehension of an artificial language by two bottlenose dolphins (named Akeakamai and Phoenix) in the period of skepticism toward animal language following Herbert Terrace's critique.

Intelligence Edit

Cognition Edit

Cognitive abilities that have been investigated include concept formation, sensory skills, and mental representations. Such research has been ongoing since the 1970s. This includes: Acoustic and behavioral mimicry, Comprehension of novel sequences in an artificial language, Memory, Monitoring of self behavior, Discrimination and matching, Comprehension of symbols for various body parts, Comprehension of pointing gestures and gaze (as made by dolphins or humans), Mirror self-recognition, and Numerical values.

Tool use and Culture Edit

At least some wild bottlenose dolphins use tools. In Shark Bay, dolphins place a marine sponge on their rostrum, presumably to protect it when searching for food on the sandy sea bottom. This has only been observed in this bay (first in 1997), and is predominantly practiced by females. Sea otters are the only other known marine mammalian tool users. A 2005 study showed mothers most likely teach the behavior to their offspring, evincing culture (behavior learned from other species members). Mud plume feeding is a feeding technique performed by a small community of bottlenose dolphins over shallow seagrass beds (less than 1 m) in the Florida Keys in the United States. The behavior involves creation of a U-shaped plume of mud in the water column and then rushing through the plume to capture fish.

Along the beaches and tidal marshes of South Carolina and Georgia in the United States, bottlenose dolphins cooperatively herd prey fish onto steep and sandy banks in a practice known as "strand feeding". Groups of between two and six dolphins are regularly observed creating a bow wave to force the fish out of the water. The dolphins follow the fish, stranding themselves briefly, to eat their prey before twisting their bodies back and forth in order to slide back into the water.

Some Mauritanian dolphins cooperate with human fishermen. The dolphins drive a school of fish towards the shore, where humans await with nets. In the confusion of casting nets, the dolphins catch a large number of fish as well. Intraspecies cooperative foraging has also been observed. These behaviors may also be transmitted via teaching. Controversially, Rendell and Whitehead have proposed a structure for the study of cetacean culture. Similar cases have been observed in Laguna, Santa Catarina in Brazil since during 19th century as well.

Near Adelaide, in South Australia, three bottlenose dolphins 'tail-walk', whereby they elevate the upper part of their bodies vertically out of the water, and propel themselves along the surface with powerful tail movements. Tail-walking mostly arises via human training in dolphinaria. In the 1980s, a female from the local population was kept at a local dolphinarium for three weeks, and the scientist suggests she copied the tail-walking behavior from other dolphins. Two other wild adult female dolphins have now copied it from her.

Ecology Edit

Feeding Edit

A dolphin's diet consists mainly of small fish, crustaceans, and squid. Although this varies by location, many populations share an appetite for fish from the mullet, the tuna and mackerel, and the drum and croaker families. Its cone-like teeth serve to grasp, but do not chew food. When they encounter a shoal of fish, they work as a team to herd them towards the shore to maximize the harvest. They also hunt alone, often targeting bottom-dwelling species. The bottlenose dolphin sometimes hits a fish with its fluke, sometimes knocking it out of the water, using a strategy called "fish whacking". "Strand feeding", is an inherited feeding technique used by bottlenose dolphins near and around coastal regions of Georgia and South Carolina. When a pod finds a school of fish, they will circle the school and trap the fish in a mini whirlpool. Then, the dolphins will charge at the school and push their bodies up onto a mud-flat, forcing the fish on the mud-flat, as well. The dolphins then crawl around on their sides, consuming the fish they washed up on shore. Bottlenose dolphins conflict with small-scale coastal commercial fisheries in some Mediterranean areas. Common bottlenose dolphins are probably attracted to fishing nets because they offer a concentrated food source.

Predators Edit

Some large shark species, such as the tiger shark, the dusky shark, the great white shark and the bull shark, prey on the bottlenose dolphin, especially calves. The bottlenose dolphin is capable of defending itself by charging the predator; dolphin 'mobbing' behavior of sharks can occasionally prove fatal for the shark. Targeting a single adult dolphin can be dangerous for a shark of similar size. Killer whale populations in New Zealand and Peru have been observed preying on bottlenose dolphins, but this seems rare, and other orcas may swim with dolphins. Swimming in pods allows dolphins to better defend themselves against predators. Bottlenose dolphins either use complex evasive strategies to outswim their predators, or mobbing techniques to batter the predator to death or force it to flee.

Gallery Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.